Flow shear stress enhances intracellular Ca2+ signaling in pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension.
نویسندگان
چکیده
An increase in cytosolic Ca(2+) concentration ([Ca(2+)]cyt) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and an important stimulus for pulmonary arterial medial hypertrophy in patients with idiopathic pulmonary arterial hypertension (IPAH). Vascular smooth muscle cells (SMC) sense the blood flow shear stress through interstitial fluid driven by pressure or direct exposure to blood flow in case of endothelial injury. Mechanical stimulus can increase [Ca(2+)]cyt. Here we report that flow shear stress raised [Ca(2+)]cyt in PASMC, while the shear stress-mediated rise in [Ca(2+)]cyt and the protein expression level of TRPM7 and TRPV4 channels were significantly greater in IPAH-PASMC than in normal PASMC. Blockade of TRPM7 by 2-APB or TRPV4 by Ruthenium red inhibited shear stress-induced rise in [Ca(2+)]cyt in normal and IPAH-PASMC, while activation of TRPM7 by bradykinin or TRPV4 by 4αPDD induced greater increase in [Ca(2+)]cyt in IPAH-PASMC than in normal PASMC. The bradykinin-mediated activation of TRPM7 also led to a greater increase in [Mg(2+)]cyt in IPAH-PASMC than in normal PASMC. Knockdown of TRPM7 and TRPV4 by siRNA significantly attenuated the shear stress-mediated [Ca(2+)]cyt increases in normal and IPAH-PASMC. In conclusion, upregulated mechanosensitive channels (e.g., TRPM7, TRPV4, TRPC6) contribute to the enhanced [Ca(2+)]cyt increase induced by shear stress in PASMC from IPAH patients. Blockade of the mechanosensitive cation channels may represent a novel therapeutic approach for relieving elevated [Ca(2+)]cyt in PASMC and thereby inhibiting sustained pulmonary vasoconstriction and pulmonary vascular remodeling in patients with IPAH.
منابع مشابه
The cancer theory of pulmonary arterial hypertension
Pulmonary arterial hypertension (PAH) remains a mysterious killer that, like cancer, is characterized by tremendous complexity. PAH development occurs under sustained and persistent environmental stress, such as inflammation, shear stress, pseudo-hypoxia, and more. After inducing an initial death of the endothelial cells, these environmental stresses contribute with time to the development of h...
متن کاملIncreased smooth muscle cell expression of caveolin-1 and caveolae contribute to the pathophysiology of idiopathic pulmonary arterial hypertension.
Vasoconstriction and vascular medial hypertrophy, resulting from increased intracellular [Ca2+] in pulmonary artery smooth muscle cells (PASMC), contribute to elevated vascular resistance in patients with idiopathic pulmonary arterial hypertension (IPAH). Caveolae, microdomains within the plasma membrane, contain the protein caveolin, which binds certain signaling molecules. We tested the hypot...
متن کاملAttenuating endoplasmic reticulum stress as a novel therapeutic strategy in pulmonary hypertension.
BACKGROUND Evidence suggestive of endoplasmic reticulum (ER) stress in the pulmonary arteries of patients with pulmonary arterial hypertension has been described for decades but has never been therapeutically targeted. ER stress is a feature of many conditions associated with pulmonary arterial hypertension like hypoxia, inflammation, or loss-of-function mutations. ER stress signaling in the pu...
متن کاملOxidative stress-dependent activation of collagen synthesis is induced in human pulmonary smooth muscle cells by sera from patients with scleroderma-associated pulmonary hypertension
Pulmonary arterial hypertension is a major complication of systemic sclerosis. Although oxidative stress, intima hyperplasia and a progressive vessel occlusion appear to be clearly involved, the fine molecular mechanisms underpinning the onset and progression of systemic sclerosis-associated pulmonary arterial hypertension remain largely unknown. Here we shows for the first time that an increas...
متن کاملSerotonin Signaling Through the 5-HT1B Receptor and NADPH Oxidase 1 in Pulmonary Arterial Hypertension
OBJECTIVE Serotonin can induce human pulmonary artery smooth muscle cell (hPASMC) proliferation through reactive oxygen species (ROS), influencing the development of pulmonary arterial hypertension (PAH). We hypothesize that in PASMCs, serotonin induces oxidative stress through NADPH-oxidase-derived ROS generation and reduced Nrf-2 (nuclear factor [erythroid-derived 2]-like 2) antioxidant syste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 307 4 شماره
صفحات -
تاریخ انتشار 2014